
A Practical Approach to Donation System Privacy
Using Paillier Homomorphic Encryption

Christoper Daniel - 18222034
Program Studi Sistem dan Teknologi Informasi

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: christoper.daniel04@gmail.com , 18222034@std.stei.itb.ac.id

Abstract—As digital donation systems become more common,
they bring significant risks to the donor data privacy. Sensitive
information, such as donation amounts is vulnerable to
inappropriate use if it is not properly protected. This paper
proposes a practical approach to preserving privacy in donation
systems using homomorphic encryption, the Paillier algorithm.
The designed system allows donation amounts to be encrypted on
the client-side before being sent to the server. The server can
perform additive operations directly on the encrypted data
(ciphertexts) to count the aggregate total of all donations without
knowing the value of individual donations. This implementation
uses Python programming language with Flask framework, phe
library for Paillier encryption, and SQLite for data storage. The
results demonstrate that the system successfully aggregates
encrypted donations accurately while maintaining donor
confidentiality, offering a great privacy solution for modern
donation platforms that balances security with practical
usability.

Keywords—homomorphic encryption; Paillier; data privacy;
donation system; cybersecurity; cryptography;

I. INTRODUCTION
A. Background

Philanthropy has been changed by the growing popularity
of the internet, which makes it easier for people to make use of
online platforms to support something they care about than
ever before. However, there are some serious issues with data
security and privacy that come with this convenience [1].
Every transaction creates a digital trace especially when it
comes to donations, this includes private financial and
personal information. Public concern has been raised by
significant data breaches that have demonstrated that even
reputable companies are vulnerable to attacks from either
outside or inside. Depending on the type of cause, donors
might experience wealth profiling, unwanted targeted strikes,
as well as social criticism as the consequence of their donation
history being made public.

Therefore, protecting donor's information confidentiality
isn't just a trivial requirement but also an important part of
developing and maintaining trust which is the foundation of
philanthropy [1]. Donors are more likely to make significant
and consistent contributions when they feel comfortable with
the platform. A system that enables organizations to process

donations and count the total amount of money raised without
ever having access to the unencrypted values of individual
contributions is needed to solve this difficulty. It turns out that
homomorphic encryption is the best option. It is a
revolutionary type of encryption that enables direct calculation
on ciphertexts or encrypted data [2]. This means the server can
sum up total donations without having to decrypt each
incoming donation, preserving individual privacy from end to
end and protecting data even from internal threats, such as a
compromised or curious database administrator.

B. Problem Statement

Old contribution systems commonly use basic database
encryption or keep the donation amounts in plaintext. These
techniques make the system have no defense against internal
threats but they do protect data from outside attackers who
could steal the actual database files. The plaintext details of
each donation are accessible to any program, system
administrator, even privileged user with application layer
access.

There are significant disadvantages to other
privacy-preserving techniques. For example, reduction or data
masking permanently changes the data, making it impossible
to get accurate aggregation. Despite being an excellent method
to confirm the integrity of data, hashing is a one-way function
that can't be used for mathematical operations. For example,
two hashed values cannot be summed to get a hash of their
total [3]. Therefore, the main challenge is to create a system
that accurately calculates the total amount of donations from
several donors without ever disclosing to any party, including
the server that controls the data aggregation. This paper
addresses that specific challenge.

C. Objective

This paper's main goal is to develop, implement, and
evaluate a privacy-preserving donation system that makes use
of the Paillier homomorphic encryption scheme's additive
operation. This system will offer a proof that shows how
easily accessible technology may be used to safely aggregate
sensitive financial data without endangering the security of
individual records.

Makalah II4021 Kriptografi, Semester II Tahun 2024/2025

II. LITERATURE REVIEW
A. Donation System Models

Digital donation can be categorized into two models,
third-party crowdfunding sites such as GoFundMe or KitaBisa
and direct-to-charity portals. The donor usually uses a web
form to submit their payment and personal information in both
models. Transport Layer Security (TLS) is used to protect this
data while it is in motion but it is decrypted and processed
once it gets to the server. Although databases can be encrypted
while they are not in use, but the application layer itself
becomes vulnerable. Individual donation records can
frequently be viewed and queried by platform administrators,
customer support representatives, or data analysts [1]. A single
point of failure for privacy is created by this centralized trust
approach.

B. Privacy in Cryptography

Data encryption is the foundation of modern information
security. Cryptographic schemes are categorized as symmetric
encryption and asymmetric encryption, each with different
properties and use cases:

a. Symmetric Encryption

Uses a single shared secret key for both encryption
and decryption. It is computationally very fast,
making it ideal for encrypting large volumes of data.
However, the requirement of a shared secret key
makes key distribution difficult in public systems.

b. Asymmetric Encryption

Uses a pair of keys, specifically a public key for
encryption and a private key for decryption. The
public key can be openly shared without any further
and complicated security as it cannot be used for
decryption. This model is perfectly suited for
donation systems as the public key can be used to
encrypt donor contributions while only the
organization holding the secret private key can
decrypt the final aggregate total [3].

 The difference between symmetric and asymmetric
encryption can be seen in the following table below

TABLE I. SYMMETRIC VS ASYMMETRIC

ASPECT SYMMETRIC ENCRYPTION ASYMMETRIC ENCRYPTION

Keys Single shared key Public key and private
key

Speed Fast Slow

Key
Management

Difficult (secure
distribution)

Easy (public key can be
shared)

Use Bulk data encryption Digital signatures, HE

C. Homomorphic Encryption Overview

 Homomorphic encryption (HE) allows computations to be
performed directly on the ciphertexts without having to
decrypt it first. The result is the same as the result of
performing the same operations on the plaintexts [2]. This
concept was first proposed by Rivest, Adleman, and
Dertouzos in 1978, not long after the invention of RSA.

 There are two types of homomorphic encryption which are
categorized by the operations they support:

a. Partially Homomorphic Encryption (PHE)

Supports operations such as addition or
multiplication. The Paillier cryptosystem is a
well-known PHE scheme that is additively
homomorphic [4].

b. Fully Homomorphic Encryption (FHE)

Supporting both addition and multiplication
operations. While incredibly powerful, FHE are
currently too slow for most practical applications.

 The Paillier cryptosystem was introduced by Pascal
Paillier in 1999. Paillier is a probabilistic asymmetric
algorithm with a powerful additive homomorphic property [4].
This property is mathematically expressed as:

 𝐷(𝐸(𝑚
1
) · 𝐸(𝑚

2
) (𝑚𝑜𝑑 𝑛2)) = 𝑚

1
+ 𝑚

2
 (𝑚𝑜𝑑 𝑛)

 This means that the decryption result of two ciphertexts
multiplied by each other matches to the sum of their
corresponding plaintexts. This feature makes it an excellent
choice for applications requiring the summation of private
data, such as the donation system proposed in this paper.

 The additive homomorphic property of Paillier
cryptosystem has made it a popular choice for
privacy-preserving applications. In e-voting systems,
encrypted ballots can be publicly counted to determine the
winner of an election without revealing each individual
choice. This is conceptually identical to counting donations.
For example, the work by Adida and Rivest, explores the use
of homomorphic encryption in voting protocols to ensure both
voter privacy and vote integrity [5]. However, many of these
systems remain theoretical because they are too complex for
implementation. This paper is set by focusing on creating a
simple, practical, and accessible web-based prototype
specifically for donation system privacy, showing a clear real
use case.

III. DESIGN AND IMPLEMENTATION
A. System Architecture

The system is designed with a client-server architecture
based on the roles of donor (people who donates), server
(aggregator), and admin. The architecture is designed to
minimize trust placed in the server. The interaction of the
system proceeds through this process:

1. Key Setup

Makalah II4021 Kriptografi, Semester II Tahun 2024/2025

In the first execution, the system automatically
generates a single Paillier public and private key pair.
This is a one time setup process. The private key is
stored securely on the server and kept secret while
the public key is loaded by the system for encrypting
new donations.

2. Donation

A donor navigates to the web interface, enters their
name and donation amount then submits the form.

3. Encryption

Upon receiving the POST request, the Flask server
immediately encrypts the donation amount using the
public key. After that, the original plaintext amount is
discarded from memory.

4. Storage

The server stores the donor's name as plaintext
alongside with the encrypted donation amount as
ciphertext in an SQLite database.

5. Aggregation

The server fetches all ciphertexts from the database
and combines them using homomorphic encryption
by multiplying them together to get the encrypted
total amount of the donation.

6. Decryption (for demonstration purposes)

The resulting aggregated ciphertext is passed to a
secure admin function. This function uses the private
key to decrypt the total donation and show the final
sum without exposing any individual donation.

The process can be seen visually through the diagram below

Fig. 1. System process flowchart

B. Paillier Encryption Scheme

 The system is built with the mathematical foundation of
the Paillier cryptosystem. The core operations are
implemented in the phe library by python.

1. Key Generation
● Choose two large prime numbers, p and q,

where 𝑔𝑐𝑑(𝑝𝑞, (𝑝 − 1)(𝑞 − 1)) = 1
● Find modulus and Charmichael’s 𝑛 = 𝑝𝑞

function λ = 𝑙𝑐𝑚(𝑝 − 1, 𝑞 − 1)
● Find g where 𝑔 < 𝑛2

● The public key is the pair (𝑛, 𝑔)
● The private key is the pair , where (λ, µ)

 and µ = (𝐿(𝑔λ(𝑚𝑜𝑑 𝑛2)))
−1

(𝑚𝑜𝑑 𝑛)
 𝐿(𝑥) = (𝑥 − 1)/𝑛

2. Encryption
● To encrypt plaintext m where , 0 ≤ 𝑚 < 𝑛

select random integer r where 0 < 𝑟 < 𝑛
and 𝑔𝑐𝑑(𝑟, 𝑛) = 1

● The ciphertext is computed as
 𝑐 = 𝑔𝑚 · 𝑟𝑛(𝑚𝑜𝑑 𝑛2)

● The random r ensures that the scheme is
probabilistic, encrypting the same plaintext
multiple times will produce a different
ciphertext each time so it prevents attackers
from linking identical donations.

3. Decryption
● To decrypt ciphertext c, use private key pair

 where the ciphertext is recovered as (λ, µ)
 𝑚 = 𝐿(𝑐λ(𝑚𝑜𝑑 𝑛2)) · µ (𝑚𝑜𝑑 𝑛)

4. Homomorphic Addition
● Given two ciphertext and 𝑐

1
= 𝐸(𝑚

1
)

. When they’re multiplied by 𝑐
2

= 𝐸(𝑚
2
)

each other and modulo by , the result is 𝑛2

 𝑐
𝑠𝑢𝑚

= 𝑐
1

· 𝑐
2
 (𝑚𝑜𝑑 𝑛2) =

 (𝑔
𝑚

1𝑟
1

𝑛) · (𝑔
𝑚

2𝑟
2

𝑛)(𝑚𝑜𝑑 𝑛2) =

 𝑔
𝑚

1
+𝑚

2(𝑟
1
𝑟

2
)𝑛 (𝑚𝑜𝑑 𝑛2)

● The resulting is a true encryption of 𝑐
𝑠𝑢𝑚

 𝑚
1

+ 𝑚
2

C. Data Flow and Storage

 The data flow is maintained by Flask in app.py. When
someone submits a donation, the “/” route handler for POST
requests will be triggered. The details of the implementation is
shown by the following code below

@app.route('/', methods=['GET', 'POST'])

def index():

Makalah II4021 Kriptografi, Semester II Tahun 2024/2025

 if request.method == 'POST':

 try:

 name = request.form['name']

 amount =

float(request.form['amount'])

 enc = public_key.encrypt(amount)

 ciphertext_str =

f"{enc.ciphertext()}|{enc.exponent}"

 db = get_db()

 db.execute('INSERT INTO donations

(donor_name, ciphertext) VALUES (?, ?)',

(name, ciphertext_str))

 db.commit()

 flash(f"Donation by {name}

recorded successfully!")

 except Exception as e:

 flash(f'Error: {e}')

 return redirect(url_for('index'))

 return render_template('index.html')

 The resulting ciphertext from phe library contains large
integer results and a public key exponent. It needs to be
separated by a pipe “|” to store it in a simple text field in
SQLite database. The schema for the database is shown below

CREATE TABLE donations (

 id INTEGER PRIMARY KEY

AUTOINCREMENT,

 donor_name TEXT NOT NULL,

 ciphertext TEXT NOT NULL

)

 The implementation tech stack that is used in this system is
quite simple. Python’s micro web framework, Flask, is used in
the backend for routing and handling web requests. The
python-paillier (phe) library is used to implement the
homomorphic cryptosystem which provides a high-level and
user-friendly API. For the database, the system uses SQLite, a
self-contained and serverless SQL database engine which is
ideal for prototyping. Lastly, the front-end is built with
standard HTML5, CSS3, and JavaScript to create a responsive
and interactive user interface. Here’s the project
implementation directory structure:

/DonationSystemPrivacyPaillier

|-- app.py
|-- donations.db
|-- public_key.pickle
|-- private_key.pickle
|-- README.md
|
|-- interface/
| |-- index.html
| `-- admin.html
|
`-- static/
 |-- css/
 | |-- main.css
 | `-- admin.css
 `-- js/
 |-- main.js
 `-- admin.js

 App.py is the main entry point of the application where it
contains all the Flask backend logic, such as routing, request
handling, and Paillier encryption decryption process. Interface
is the directory containing HTML templates that are rendered
by Flask. Static directory contains all the static files that are
served directly to the browser, such as JS and CSS. As for
donations.db, public_key.pickle, and private_key.pickle are
automatically generated on the first run.

D. Security Features

 To protect donor privacy, the system's architecture includes
several kinds of security measures. The threat model assumes
an external attacker and a server administrator who is honest
but also curious who will follow protocols but may try to
extract information from the data that they can access. Here is
some of the security features from the system:

a. Confidentiality of the donation amount
Individual donation amount are never shown or
processed in plaintext on the server. They are
encrypted immediately and only the final sum is ever
decrypted (for demonstration purposes). This protects
from both database breaches and insider threats.

b. Semantic security
Due to the characteristics of Paillier encryption,
where the encryption is based on probability, an
attacker can’t determine if two donors donated the
same amount or not as the ciphertexts will be
different from one another.

IV. RESULTS
A. System Demonstration

The implemented donation privacy system provides two
web interfaces: a public-facing donation page and a restricted
admin dashboard. Note that in this implementation program,
there is no user registration or role-based access control
because this implementation is for demonstration purposes.

Makalah II4021 Kriptografi, Semester II Tahun 2024/2025

Fig. 2. The donation interface for submitting donation amount

 The public-facing donation page has a clean and simple
form that allows users to enter their name and a donation
amount they desire. The interface provides immediate
feedback upon successful submission.

Fig. 3. Admin dashboard page showing encrypted total and donors list

 This admin dashboard displays a list of all donors with
their donation encrypted and the homomorphically aggregated
total donation which is shown as a large and encrypted integer.
Button "Show Decrypted Total," allows the administrator to
trigger the decryption of the final sum but this is for
demonstration purposes only.

B. Encryption Performance and Scalability

 The system's performance was evaluated qualitatively. The
time needed for key creation, encryption, and aggregation is
low for small to moderate donations, resulting in a pleasant
user experience. However, it is well known that homomorphic
encryption requires greater computing capacity to operate than
conventional cryptography.

 Aggregation and decryption times would rise for a larger
scale system that handles millions of donations or utilizing
much bigger key sizes (e.g. 4096-bit or 2048-bit). Aggregation
requires getting every ciphertext and multiplying each one,
which is an O(N) operation. For production systems, the

trade-off between scalability (number of donors) and security
(key size) is important.

C. Security Validation and Correctness

 The correctness of the homomorphic aggregation was the
most important aspect to validate. This was done by
comparing the decrypted total with the manual sum of all
plaintext donations that was made during the testing. Here is
the example that illustrates the process:

1. Alice donates Rp100.000 and the system computes
 𝑐

1
= 𝐸(100. 000)

2. Bob donates Rp150.000 and the system computes
 𝑐

2
= 𝐸(150. 000)

3. The system counts the aggregate ciphertext
 𝑐

𝑡𝑜𝑡𝑎𝑙
= 𝑐

1
· 𝑐

2
 (𝑚𝑜𝑑 𝑛2)

4. The admin requests the total of donation, then the
system sends to the decryption function. 𝑐

𝑡𝑜𝑡𝑎𝑙
5. The decryption function then counts

 which 𝐷(𝑐
𝑡𝑜𝑡𝑎𝑙

) = 𝐷(𝐸(100. 000) · 𝐸(150. 000))
has the same result as . 100. 000 + 150. 000

 This process was tested repeatedly with various amounts
and the decrypted total accurately matched the sum of the
individual plaintext amounts. This confirms that the additive
homomorphic encryption of the Paillier scheme was
implemented correctly and reliable for this use case.

D. Limitations

 While this prototype system successfully demonstrates the
core concept, it has several limitations that would need to be
addressed before going into a production environment:

a. Partially Homomorphic Nature

The system only supports addition operation. It can’t
perform complex analytics, such as calculating the
donation average or performing standard deviation
calculations which would require a fully
homomorphic scheme.

b. Key Management

The public keys and private keys are stored in local
pickle files (public_key.pickle, private_key.pickle).
This is insecure and not scalable because in a
real-world scenario, the private key must be stored in
a secure database or a dedicated key management
service (KMS) to prevent robbery and managing
access needs.

c. Scalability Concerns

The computational burden of homomorphic
operations might become a breakdown for systems
with a very high volume of transactions or when
using larger and more secure key sizes.

d. Lack of Public Verifiability

There is no way for the public to confirm that the
decrypted total in the admin dashboard is accurate.

Makalah II4021 Kriptografi, Semester II Tahun 2024/2025

They have to trust that the administrator hasn't
changed the aggregate process or the result. More
complex cryptographic methods could be used to
overcome this restriction.

V. CONCLUSION
The system implementation has successfully demonstrated

a practical and privacy-preserving donation system using the
Paillier homomorphic encryption. It is feasible to build a
functional and secure system where financial data like
donation value can be aggregated without exposing the
individual values. This effectively prevents the risk of
sensitive donor information. The implementation validates that
properties of homomorphic addition can be practically
integrated into a web application architecture using tools that
are necessary to use.

The practical approach that is presented in this paper has
significant implications for any real-world application where
data confidentiality is very important nowadays. It provides a
concrete cryptographic answer to privacy issues that may
prevent people from participating in online activities,
especially in the social and financial area. This encryption
algorithm is appropriate for private medical data analysis,
secure e-voting, and any other type of confidential financial
reporting alongside the donation privacy system. In our
growing data-driven society, this technology can improve
security and trust by enabling computation on encrypted data.

SOURCE CODE LINK AT GITHUB
Here’s the GitHub repository link where you can access

the code:

https://github.com/ChristoperDaniel/DonationSystemPrivacyP
aillier

ACKNOWLEDGEMENT
I would sincerely express my praise and gratitude to the

Almighty God that this paper can be completed within the
given deadline. I also would like to express my deepest
gratitude to Mr. Dr. Ir. Rinaldi Munir, M.T. for all the lectures
that have been given and for this opportunity to write this
paper. I am also grateful for my family for always supporting
me till the very end and for all the rightful owner of all the
references that I used in order to complete this paper.

REFERENCES
[1] A. Acquisti, L. Brandimarte, and G. Loewenstein, "Privacy and human

behavior in the age of the Internet," Science, vol. 347, no. 6221, pp.
509-514, 2015.

[2] R. Munir, “Enkripsi Homomorfik,” Lecture Slides for II4021
Kriptografi, Institut Teknologi Bandung, 2025.

[3] W. Stallings, Cryptography and Network Security: Principles and
Practice, 7th ed. Pearson, 2017.

[4] P. Paillier, "Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes," in Proceedings of the International Conference on
the Theory and Application of Cryptology and Information Security
(EUROCRYPT '99), 1999, pp. 223–238.

[5] B. Adida and R. L. Rivest, "Scratch & Vote: A Verifiable Paper-Based
Cryptographic Voting System," in Proceedings of the 5th ACM
Workshop on Privacy in the Electronic Society, 2006, pp. 69-80.

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 20 Juni 2025

Christoper Daniel / 18222034

Makalah II4021 Kriptografi, Semester II Tahun 2024/2025

https://github.com/ChristoperDaniel/DonationSystemPrivacyPaillier
https://github.com/ChristoperDaniel/DonationSystemPrivacyPaillier

	I. INTRODUCTION
	A.Background
	B.Problem Statement
	C.Objective

	II. LITERATURE REVIEW
	A.Donation System Models
	B.Privacy in Cryptography
	C.Homomorphic Encryption Overview

	III. DESIGN AND IMPLEMENTATION
	A.System Architecture
	B.Paillier Encryption Scheme
	C.Data Flow and Storage
	D.Security Features

	IV. RESULTS
	A.System Demonstration
	B.Encryption Performance and Scalability
	C.Security Validation and Correctness
	D.Limitations

	V. CONCLUSION
	SOURCE CODE LINK AT GITHUB
	ACKNOWLEDGEMENT
	REFERENCES

